
Supplementary Material for MarineEval

This supplementary contain the details of dataset statistic
(Section A), domain gap analysis (Section B) and dataset
dimension (Section C).

A. Dataset Statistic

This section contain the details of dataset size (Section A.1),
qustion format distribution (Section A.2), and image resolu-
tion distribution (Section A.3).

A.1. Dataset Size
MarineEval achieves a balance between quantity and expert-
verified quality. As shown in Table 1, MarineEval provides
a comparable quantity to other domain-specific benchmarks
while encompassing a broader variety of question formats,
enhancing breadth and utility.

A.2. Question Format Distribution
MarineEval consists of 2,000 image-based question-answer
pairs that span across 7 tasks and 20 capacity dimensions.
To comprehensively evaluate the abilities of VLMs, we
designed five distinct question formats: “Yes-No ques-
tions”, “multiple-choice questions”, “localization questions”,
“closed-form questions”, and “summarization questions”,
where the qusetion format distribution is shown in Figure 4.

Figure 1. Distribution of various question formats in MarineEval

A.3. Image Resolution Distribution
The image resoluation distribution is illustrated in Figure 2.
The maximum resolution is around 2,000 pixels, with aver-
age resolution [629height, 790width].

Figure 2. Distribution of image resolutions of MarineEval across
capabilities. The large marker denotes average resolution.

B. Domain Gap Analysis
From the experiments reported in the main paper, we ob-
served that the model exhibits notable weaknesses in two
key aspects: spatial reasoning and species comprehen-
sion. In this section, we further investigate whether these
shortcomings primarily arise from insufficient marine sci-
ence domain knowledge or from fundamental limitations of
current VLMs.

To this end, we constructed a human-verified evaluation
set encompassing both general and marine-specific contexts,
each consisting of 200 questions. The dataset was carefully
designed to ensure both quality and comprehensive coverage.
We then assessed the performance of the best-performing
open-source and closed-source models, as summarized in
Table 2. Our analysis reveals two major findings:
• Spatial reasoning performance remains consistently low

across both domains, suggesting that this limitation stems
from intrinsic weaknesses in current VLM architectures or
optimization strategies rather than from a lack of domain-
specific data.

• Species comprehension declines sharply in the marine
context, highlighting these models’ heavy dependence on
specialized knowledge and insufficient adaptation to niche
domains.
To further contextualize these findings, we conducted

a human evaluation study using MarineEval. In this ex-
periment, individuals from both general and marine science
backgrounds were invited to answer the same set of questions
used for model evaluation. The results in Figure 3 reveal that
participants with a marine science background substantially
outperform both VLMs and general-background participants
on average, particularly in Species Comprehension (SC).
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Domain-Specific Benchmarks

Benchmark # Questions Question Format Domain

Heron-Bench 102 Free-Form Japanese

KOFFVQA 275 Free-Form Korean

CulturalVQA 2,378 Free-Form Culture

VQA-RAD 3,515 Yes/No, Free-Form Medical

MarineEval (Ours) 2,000 Yes/No, Multiple Choice, Localization, Free-Form Marine

General-Domain Benchmarks

MM-VET 200 Free-Form General

MME 2,194 Yes/No General

SEED-Bench 19,242 Multiple Choice General

Table 1. Comparison of VQA benchmarks statistics.

General Domain Spatial Reasoning Species Comprehension

Best open-source model 18.00 24.50

Best close-source model 33.00 62.00

Marine Domain Spatial Reasoning Species Comprehension

Best open-source model 17.00−01.00 23.00−01.50

Best close-source model 32.00−01.00 35.71−26.29

Table 2. Performance comparison under general and marine set-
tings. Each setting contains 200 questions.

This convergence between human and model performance
gaps highlights that SC is the dimension most reliant on
domain-specific expertise. Together with the quantitative
results in Table 2, these findings underscore the essential
role of domain adaptation in advancing multimodal under-
standing within specialized scientific fields such as marine
ecology.

Figure 3. Performance comparison of humans and VLMs.

C. Dimensions

This section show the details of each dimension in 7 capa-
bilities, including Species Comprehension (Section C.1),
Behaviour & Trait Extraction (Section C.2), Document
Interpretation (Section C.3), Conservation & Threat Analy-
sis (Section C.4), Marine Technology Understanding (Sec-
tion C.5), Spatial Reasoning (Section C.6), Hallucination
Resistance (Section C.7). The overview of all 7 task dimen-
sions and 20 capacity dimensions is shown in Table 3

C.1. Species Comprehension
This dimension evaluates the ability of VLMs to identify
and interpret species-specific visual information, thereby
supporting biodiversity monitoring and ecological research.
We detail various subtasks in the following subsections.

C.1.1. Species Identification

Figure 4. Distribution of difficulties for Species Identification task.

This dimension assesses the capacity of VLMs to perform
taxonomic classification of organisms depicted in images. To
provide a more granular evaluation of VLMs’ performance,
the questions are categorized into three levels of difficulty
based on the taxonomic rank. The definitions of these dif-
ficulty levels and their distribution are presented in Table 4
and Figure 4, respectively. A question sample is shown in
Figure 6 for better illustration.

Figure 5. Model performance for the Species Identification task.



Capability Dimension Description

Species
Comprehension

Species Identification Determine the scientific (binomial) name of a species from a single specimen image.

Cross-Image
Matching

Assess whether two independently presented images depict the same species.

Biodiversity
Recognition

Identify and list all distinct species visible within a complex ecological scene.

Ecological Attribute
Inference

Infer ecological attributes of a given species—such as habitat, geographic range, or trophic
role—from its image.

Inter-Species
Relationship
Reasoning

Analyze pairs of species images to deduce their ecological relationship (e.g., predation,
mutualism, symbiosis).

Camouflage
Localization

Detect and spatially delineate organisms exhibiting camouflage through disruptive col-
oration or texture blending.

Behaviour & Trait
Extraction

Trait Extraction Extract key morphological or visual traits of a species from a single image.

Behavioural
Classification

Identify and classify behavioral patterns displayed in a short sequence of frames.

Document
Interpretation

Figure Understanding Interpret and derive insights from scientific figures or graphical data representations.

Book Understanding Comprehend and extract information from book pages.

Paper Understanding Analyze, and interpret research findings presented in scientific journal articles with
extensive textual content.

Conservation &
Threat Analysis

Disaster Diagnosis Identify the type of environmental disaster represented in an image.

Pollutant Localization Detect and localize anthropogenic pollutants or contaminants within the visual scene.

Threat-Status
Determination

Determine the International Union for Conservation of Nature (IUCN) conservation status
of the focal organism.

Marine Technology
Understanding

Instrument Function
Identification

Identify the function or operational role of marine equipment shown in an image.

Spatial Reasoning

Visual Grounding Locate within an image the species or object referenced in a textual query.

Numerosity Estimation Count the number of instances of relevant entities (e.g., fish, vessels) present in an image.

Depth Ordering Determine which of several designated points in an image is closest to the observer or
camera viewpoint.

Spatial Relation
Assessment

Infer the relative spatial arrangement between two organisms (e.g., left of, above).

Hallucination
Resistance

Hallucination
Resistance

Assess whether the model produces fabricated or unsupported outputs when prompted
with ambiguous or controlled inputs.

Table 3. Overview of the seven task dimensions and twenty capability dimensions in our MarineEval.

Difficulty Description

Simple Models are asked to determine the taxonomic Family name.

Medium Models are asked to determine the taxonomic Genus name

Hard Models are asked to determine the taxonomic Species name

Table 4. Definition of difficulty for the Species Identification.

Data collection: The data for this dimension is sourced from
BioTrove [35], which provides taxonomic classifications at
various levels along with corresponding images. All classifi-
cation labels have been verified by more than three domain
experts and researchers on iNaturalist [12].

Performance: As reported in Figure 5, both open-source and
close-source VLMs face challenges in accurately identifying
organisms at the Species level. However, close-source
models generally outperform open-source models across dif-
ferent levels of classification. We attribute this phenomenon
to the larger training corpus of these close-source VLMs.

C.1.2. Cross-Image Matching
This dimension evaluates whether VLMs can identify the
same species across different images or differentiate between
distinct species with similar appearances. VLMs are pre-
sented with two independent images and tasked with deter-
mining if both depict the same species. The evaluation is



Q: What is the taxonomic species
name of the organism in the
image?
GT: spinipes
[Gemini]: rosenbergii

Figure 6. Question sample of the Species Identification task.

categorized into three difficulty levels based on taxonomic
classification, as species within the same higher-level tax-
onomic group often exhibit similar physical traits, making
differentiation more challenging. A visual sample is shown
in Figure 9 for better explanation. Table 5 and Figure 7
illustrate the definitions and distributions of these difficulty
levels, respectively.

Figure 7. Difficulty distribution in the Cross-Image Matching task.

Data collection: The data used for this evaluation is also de-
rived from BioTrove [35], which provides taxonomic classi-
fications and corresponding images. All classification labels
were verified by at least three domain experts and researchers
on iNaturalist [12]. For each difficulty level, we sampled two
image pairs to construct a cross-image matching question.
Performance. As shown in Figure 8, model performance
declines as task difficulty increases, indicating greater chal-
lenges in distinguishing closely related species. However,
closed-source models show no significant performance drop
from the difficulty level of Medium to Hard, potentially due
to their stronger visual encoders.

C.1.3. Biodiversity Recognition
This dimension evaluates a model’s ability to identify every
taxon present in a visually complex scene. Given an input
image, the VLM must enumerate all species it can observe.
A representative sample is provided in Figure 10.

Figure 8. Model performance for the Cross-Image Matching task.

Q: Are these two images of the
same species?
GT: No
[Grok]: No

Figure 9. Question sample of the Cross-Image Matching task.

Difficulty Description

Simple Two images depict either the same species or different species
from distinct taxonomic Families.

Medium Two images depict different species within the same taxonomic
Family but belonging to separate Genera.

Hard Two images depict different species within the same taxonomic
Genus but belonging to separate Species.

Table 5. Definition of difficulty for Cross-Image Matching task.

Data collection. The images are drawn from a self-annotated
object-detection corpus. Images with fewer than two species
are discarded to ensure sufficient task difficulty. For the
multiple-choice question, we keep only the class labels and
augment each question with three distractors drawn uni-
formly from the remaining label pool.

Performance. As illustrated in Figure 11, the closed-source
models outperform the open-source models. However, de-
spite the smaller pre-training budgets, InterVL-2 [3] and
InternLM-XComposer-2.5 [37] achieve similar performance
to the leading proprietary models. It suggests that excel-
lence on generic multimodal benchmarks does not automati-
cally indicate a strong fine-grained ecological understanding



Q: Which of the following species are
presented in the images?
A) fish
B) nurse shark
C) carcharodon carcharias
D) megadptes antipodes
[LLaVA-Next]: A,B,C,D

Figure 10. Question sample of the Biodiversity Recognition task.

Figure 11. Model accuracy for the Biodiversity Recognition task.

ability. Instead, domain-aware pre-training and instruction
tuning are essential.

C.1.4. Ecological Attribute Inference

This task assesses whether a VLM can deduce
species–specific ecological traits from a single species
image. Concretely, the model must answer multiple–choice
questions concerning a taxon’s geographic range, preferred
habitat, reproductive strategy, or trophic niche. An
illustrative example is provided in Figure 12.
Data collection Images and ground–truth attributes are har-
vested from the BioTrove [35] and FishBase [8] repositories.
FishBase, in particular, provides expert–validated ecological

Q: Which of the following is the geological
distribution of the species in the image?
A) Spratly Islands 
B) Aral Sea 
C) North Australian Shelf 
D) Sulu-Celebes Sea
[Internlm-XComposer2.5]: A,C,D

Figure 12. Question sample of the Species Ecology task.

Figure 13. Model accuracy for the Species Ecology task.

annotations with primary literature references, ensuring high
label fidelity.
Performance. Figure 13 reveals a marked performance col-
lapse for all evaluated models, where no models surpass
50% accuracy. Accurate inference of non-visual biolog-
ical attributes requires connecting visual identification to
a structured body of domain knowledge, a capability that
present-day VLMs largely lack. The consistent shortfall
across all architectures suggests a systemic knowledge gap
rather than an optimization issue specific to any one model.

Future work could contain 1) incorporating curated eco-
logical knowledge bases during multimodal pre-training, 2)
exploring retrieval-augmented decoding to inject factual con-
text at inference time, and 3) developing evaluation suites



that disentangle visual recognition errors from knowledge-
retrieval failures. Such directions are essential if VLMs are
to support real-world biodiversity monitoring and conserva-
tion applications.

C.1.5. Inter-Species Relationship Reasoning
This evaluation dimension measures a model’s ability to
identify interspecific ecological interaction. The task covers
the five canonical relationship types: parasitism, predation,
competition, commensalism, and mutualism. Given one or
two photographs of the organisms, the model must infer
the most plausible interaction and choose the corresponding
label. A visual sample is shown in Figure 14.

Q: What is the ecological relationship
demonstrated in the images?
A) parasitism          B) predation     
C) competition       D) commensalism  
E) mutualism
[DeepSeek-VL]: A

Figure 14. Question sample of the Inter-Species Relationship Rea-
soning task.

Data acquisition. We first employed GPT-4 to generate
candidate species pairs for each interaction category, then
retrieved representative photographs through Google Image
Search, retaining the original URLs to protect copyright.
Marine biologists subsequently screened the material and
curated a balanced set of 100 image–question–answer pairs
in which 1) both organisms are clearly visible and 2) the
annotated interaction is ecologically valid.
Performance. Although recent VLMs achieve encouraging
results on general-purpose benchmarks, their accuracy on
our marine benchmark remains modest: no model exceeds an
average score of 70%, and several perform only marginally
better than random guessing, as shown in Figure 15. The
large performance room reveals that general-purpose pre-
training is insufficient for reliably interpreting specialised
marine imagery and reasoning about ecological relations. In
particular, the models struggle with recognising less-frequent

Figure 15. Model accuracy for the Inter-Species Relationship Rea-
soning task.

Q: Can you locate the camouflaged
marine species in the image? 
A: BBOX
[LLaVa]: BBOX

Figure 16. Question sample of the Camouflage Localization task.

taxa and distinguishing subtle interaction cues. These limita-
tions underscore the need for domain-specific data, expert
supervision, and tailored fine-tuning before VLMs can be
deployed with high confidence in real-world marine science
applications.

C.1.6. Camouflage Localization

Camouflage localization is notoriously challenging, even
for experienced human observers. Successful identifica-
tion requires 1) knowledge of the species-specific chromatic
patterns that allow the animal to blend seamlessly with its
surroundings, and 2) the ability to delineate the organism’s
precise spatial extent. We introduce this task to probe the
limits of current VLMs. The question is deemed correct if
there is any one predicted bounding box that overlaps with
the ground truth with IOU > 0.3. An illustrative example
is shown in Figure 16.



Data collection. We curated 100 marine-camouflage images
from the MOCA [17] and CAMO-FS [25] datasets. Non-
marine instances were manually removed, and the bound-
ing boxes provided by the original datasets were exhaus-
tively re-verified. The resulting corpus comprises 100 im-
age–question–answer triples.
Performance. The result is demonstrated in Figure 17.
Some of the models achieve nearly zero accuracy because
they cannot output bounding boxes in the required format.
For the other models, the near-floor performance indicates
that contemporary VLMs largely fail to perceive and localize
camouflaged marine animals. In other words, the models
do not yet possess the fine-grained color discrimination,
texture sensitivity, and contour reasoning required for this
localization task, highlighting a significant gap between cur-
rent VLMs and human-level perception in complex natural
scenes.

Figure 17. Model accuracy for the camouflage localization task.

C.2. Behaviour & Trait Extraction

This capability focuses on extracting species-specific traits
and classifying behaviors from images or sequences, aiding
in understanding biological and ecological processes.

C.2.1. Traits Extraction
This dimension tests VLMs’ ability to align visual trait ap-
pearance and textual description, which focuses on the bi-
ological traits of the species. Models are asked to answer
multiple-choice questions to determine the trail (e.g., color,
shape, texture, or pattern etc) of the target species. A visual
testing example is shown in Figure 18.
Data collection. Question-answer pairs are collected from a
self-collected image captioning dataset, where each caption
description the physical appearance of the target species,
which is written by marine ecologists. We input the image
and the image caption to GPT to generate multiple-choice

Q: What type of markings are
present on the legs of the creature
shown in the image?
A) green            B) red 
C) blue              D) yellow
[LLaVa]: C

Figure 18. Model accuracy for the Traits Extraction task.

Figure 19. Model accuracy for the Traits Extraction task.

questions, with one correct answer and other misleading
answers.
Performance. As shown in Figure 19, all open-source
models perform equally well on the Traits Extraction tasks.
Among the closed-source models, InternVL [3] and In-
ternVL2.5 [3] outperform the others, demonstrating higher
accuracy and better consistency in extracting detailed species
traits.

C.2.2. Behavioural Classification
This dimension evaluates the VLMs’ ability to infer species-
specific behavioral characteristics from a sequence of frames.
For example, models will be asked to identify behaviors such
as attacking prey, escaping habitats, and surfacing for air or
hiding. A visual sample is shown in Figure 20.



Q: What is the fish doing in this image?
A) Camouflaging in the grass 
B) Attacking prey 
C) Building a nest 
D) Resting on the seabed
[Claude]: B

Figure 20. Question sample of the Behavioural Characteristics task.

Figure 21. Model accuracy for the Behavioural Classification task.

Data collection. Data source for this dimension are drawn
from the Animal Kingdom dataset [24], a large-scale re-
source designed for animal behavior understanding. Verified
behavior and species labels are adapted to construct new
question-answer pairs tailored to our task. We extract 10
consecutive frames at uniform intervals from 0 to 1, with
a step size of 0.1 to capture dynamic behaviors. To ensure
meaningful behavioral distinctions, we filter out the generic
action label “swimming”, as it is common to most marine
species underwater.

Performance. Figure 21 presents the performance of the
evaluated VLMs on the behavioural classification task. Over-
all, the closed-source models performed worse than the open-
source ones, possibly due to suboptimal multi-frame process-
ing. Among all the closed-source models, Grok-2-Vision
achieved the highest accuracy, exceeding 60%. For the open-
source models, InternVL-2.5 attained the best result with an
accuracy of 50%.

C.3. Document Interpretation

This capability systematically evaluates a model’s capacity
to comprehend and interpret complex scientific documents,
including detailed figures, tables, equations, and extensive
technical diagram, thereby enabling accurate and contex-
tually informed knowledge extraction to support advanced
applications in education, research, and scientific discovery.

C.3.1. Figure Understanding

This dimension evaluates the VLMs’ ability to derive in-
sights from scientific figures or graphs. For example, models
are asked to interpret trends, compare values, or summarize
key information presented in charts, plots, or annotated dia-
grams. From a given figure, the model should infer relevant
conclusions, describe relationships between variables, or
identify anomalies and significant patterns. A visual testing
sample is shown in Figure 22.

Q: In the surface layer, the
largest percentage of DIN
input comes from the _____
area.
GT: catchment
[Claude]: catchment 

Figure 22. Question sample of the Figure Understanding task.

Data collection. 15 Open-access marine science papers [2, 4–
7, 9, 10, 16, 18, 20, 27, 28, 31, 34, 36], released between
mid-2024 and 2025, are crawled from reputable journals and
institutional sources. Only statistical figures are extracted
and cropped, excluding surrounding text, to isolate visual
content that demands careful interpretation.
Performance. For the Figure Understanding performance as
shown in Figure 23, all close-source models achieved high
performance, each exceeding 60% accuracy. Interestingly,



within the open-source models, InternVL-2.5 [3], InternVL-
2[3], and InternVLM-XComposer [37] also reached satis-
factory results, performing on par with the closed-source
models.

Figure 23. Model accuracy for the Figure Understanding task.

C.3.2. Book Understanding

This dimension assesses the VLMs’ capability to compre-
hend and interpret information presented on a book page
that combines both textual and visual elements. Models are
prompted to read descriptive paragraphs, analyze accompa-
nying figures or diagrams, and integrate these sources to
answer questions.
Data collection. We collect pages from the three ma-
rine identification books: “Reef Fish Identification - Trop-
ical Pacific”, “Reef Creature Identification - Tropical Pa-
cific”, and “Nudibranch & Sea Slug Identification - Indo-
Pacific” [1, 11, 14]. From these collected materials, we
generate question–answer pairs based on the book content.
Performance. All models perform poorly on this task, with
accuracy scores remaining below 40%, highlighting signif-
icant limitations in their ability to handle fine-grained or
domain-specific reasoning.

C.3.3. Paper Understanding

This dimension assesses the VLMs’ ability to comprehend
and extract information from scientific papers. For example,
models are asked to interpret overall architecture diagrams,
summarize experimental results, or explain methods and
conclusions based on texts, figures, and tables within the
paper. From a given section or schematic, the model should
infer the main ideas, describe the flow or design of the archi-
tecture, and clarify how its components interact. A visual
testing sample is shown in Figure 25.
Data collection. 15 Recent open-access papers [2, 4–
7, 9, 10, 16, 18, 20, 27, 28, 31, 34, 36], published between

Figure 24. Model accuracy for the Book Understanding task.

Q: In which section do remoras
most commonly associate with
the sicklefin devil ray?
A) S1 
B) S2 
C) S3 
D) S4
[Claude]: S3

Figure 25. Question sample of the Paper Understanding task.

mid-2024 and 2025, are crawled from reputable marine sci-
ence journals, websites, and institutional repositories. Docu-
ments are selected to combine complex textual content with
scientific figures, diagrams, and tables. Pages with high vi-
sual and contextual complexity are prioritized to ensure that
answering correctly demands genuine comprehension of the
scientific material, rather than relying on pattern matching
or random guessing by VLMs.

Performance. Figure 26 show that the open-source models
InternVL [3], InternVL-2.5 [3], and InternVLM-XComposer



Figure 26. Model accuracy for the Paper Understanding task.

Q: What is happening in this image?
A) Plastic pollution in ocean 
B) Tsunami 
C) Whale stranding 
D) Lost cargo containers at sea
[Qwen]: C

Figure 27. Question sample of the Disaster Diagnosis task.

[37] outperform all of the close-source models. This advan-
tage may come from the fact that these open-source models
are trained with more specialized scientific or document-
focused data. Their architecture is also better suited for
aligning figures and text, which is critical for the paper un-
derstanding task.

C.4. Conservation & Threat Analysis
This capability focuses on identifying environmental threats
and assessing the conservation status of organisms, aiding in
ecological preservation efforts.

C.4.1. Disaster Diagnosis
This dimension evaluates the capability of VLMs to rec-
ognize and interpret marine disasters, such as shipwrecks,
underwater volcanic eruptions, and tsunamis. We provide a
visual sample shown in Figure 29.
Data collection. To construct a comprehensive Disaster Di-
agnosis Visual Question Answering dataset, a diverse range

of real-world disaster scenarios is curated to ensure broad
coverage of both natural and human-induced oceanic and
coastal hazards. The dataset targets 15 representative cate-
gories: Oil tanker explosion, Sinking cruise ship, Capsized
ferry, Lost cargo containers at sea, Plastic pollution in ocean,
Coral bleaching, Melting polar ice caps, Underwater vol-
canic eruption, Toxic waste in ocean, Whale stranding, Ship
collision, Coastal flooding disaster, Algae bloom disaster
(red tide), Tsunami, and Fishing net entanglement.

All images are sourced from publicly available online
repositories or reputable scientific news and environmental
websites. To ensure copyright compliance and source trans-
parency, the corresponding URL for each image is recorded
as metadata. This guarantees traceability, proper attribution,
and enables future auditing or updates of the dataset. The
resulting image collection provides a robust foundation for
generating visually grounded questions and answers that
diagnose, describe, and reason about various marine and
coastal disaster scenarios.

Figure 28. Model accuracy for the Disaster Assessment task.

Performance. Figure 28 illustrates the performance of var-
ious VLMs on the Disaster Diagnosis task. Notably, all
closed-source models demonstrate exceptional results, with
accuracy consistently exceeding 90%. This indicates that
proprietary models maintain strong capabilities in recogniz-
ing and interpreting disaster-related scenarios. In contrast,
some open-source models still show a large room for im-
provement, highlighting the performance gap that remains
between commercial and community-driven solutions.

C.4.2. Pollutant Localization
This dimension evaluates the capability of VLMs to detect
and localize anthropogenic pollutants, specifically trash (e.g.,
plastics, debris) and oil on the ocean surface or trash under
the sea.
Data collection. The dataset is self-collected from inter-
net sources and split into tasks for both underwater trash



Q: Can you detect all the debris in
the image?
GT: BBOX
[Grok]: BBOX

Figure 29. Question sample of the Pollutant Localization task.

localization and classification. The visual questions ask the
model to identify the location of the trash, specify its type,
and determine whether there is an oil spill present. The
oil spill images are additionally sourced from the Oil Spill
dataset [32].

Figure 30. Model accuracy for the Pollutant Localization task.

Performance. The performance of all the evaluated VLMs
is notably poor, with accuracy scores remaining below 40%.
This result suggests that the models struggle significantly
with the combined challenges of underwater trash localiza-
tion and classification. A primary factor contributing to this
low accuracy is likely the failure to correctly localize the
scattered or partially occluded trash objects in complex un-
derwater environments. Furthermore, the presence of oil
spills adds additional visual noise, making it even more diffi-
cult for the models to distinguish different types of debris.
These findings highlight the need for more robust region-
level grounding and fine-grained recognition capabilities in
current VLMs when applied to real-world marine pollution
scenarios.

C.4.3. Threat-Status Determination

Q: What is the conservation status of
the species shown in the image,
according to IUCN Red List in 2019?
A) Critically Endangered 
B) Lower Risk/least concern 
C) Least Concern 
D) Extinct
[GPT4o-V]: C

Figure 31. Question sample of the Threat-Status Determination
task.

This dimension evaluates the capability of VLMs to iden-
tify marine organisms and ascertain the IUCN Red List [15]
conservation status, including categories such as Endan-
gered, Critically Endangered, Vulnerable, Near Threatened,
or Least Concern. A visual sample is shown in Figure 31.
Data collection. To construct the testing data, images of ma-
rine species were collected from publicly available resources
and the official IUCN Red List website [15]. Each image
is paired with its verified conservation status according to
the IUCN Red List categories [15]. The testing data cov-
ers a broad spectrum of species, ranging from commonly
observed marine life to rare and critically endangered organ-
isms, ensuring diversity in both species representation and
conservation categories.

The categories include: “Extinct”, “Critically Endan-
gered”, “Endangered”, “Vulnerable”, “Near Threatened”,
“Least Concern”, “Lower Risk/conservation dependent”,
“Lower Risk/near threatened”, “Lower Risk/least concern”.
Performance. Overall, most closed-source models strug-
gled to accurately identify marine organisms and correctly
assign their IUCN Red List conservation status [15]. This
underperformance may be attributed to a lack of exposure
to specialized biodiversity and conservation data during pre-
training, which limits their ability to recognize rare or less
visually distinct species and to link them with the appropri-
ate conservation category. Interestingly, one closed-source
model, LLAVA-NExt [19], stood out by achieving an ac-
curacy exceeding 90% on this dimension. This suggests



Figure 32. Model accuracy for the Threat-Status Determination
task.

that LLAVA-NExt [19] may have benefited from more ex-
tensive fine-tuning on scientific or ecological datasets, or
more advanced reasoning capabilities that help bridge vi-
sual identification with external taxonomic or conservation
knowledge.

C.5. Marine Technology Understanding
This capability assesses the ability of VLMs to recognize
and infer the purpose of marine technology based on visual
inputs.

C.5.1. Instrument Function Identification
This dimension assesses the VLMs’ ability to recognize and
infer the purpose of marine technology based solely on visual
inputs. For example, models may be asked to identify the
type of equipment, explain its function, or describe how it
is used in marine exploration or monitoring tasks. Given an
image of marine equipment, infer its intended operational
purpose. A visual sample is shown in Figure 33
Data collection. For marine technology, images and articles
published in 2024 and 2025 are crawled from marine tech-
nology magazines [22] and websites [21] to capture the latest
technologies that are unlikely to overlap with the training
data of vision-language models. GPT-4V [26] is first used
to analyze each image and automatically generate candidate
questions. A human-in-the-loop process was involved to
verify and refine these question-answer pairs to ensure their
validity and relevance for evaluation.
Performance. According to Figure 34, describing the In-
strument Function Identification performance, Gemini-2.0,
Claude-3.7, and QwenVL-2.5 achieve the highest scores,
each exceeding 80%. Among the open-source models, In-
ternVL [3], InternVL-2.5 [3], Internlm-XComposer [37],
and Mini-Monkey [13] surpass two well-known closed-
source models, GPT-4o [26] and Grok-2-Vision [33].

Q: What is the primary
propulsion method used by
the Wave Glider shown in the
image?
A) Solar power 
B) Wave energy 
C) Wind turbines 
D) Diesel engine
[Claude]: Wave energy

Figure 33. Question sample of the Instrument Function Identifica-
tion task.

Figure 34. Model accuracy for the Instrument Function Identifica-
tion task.
C.6. Spatial Reasoning
This capability examines visual-spatial reasoning skills to
localize, count, or infer relative positions of objects within
the image.

C.6.1. Visual Grounding
This dimension evaluates the model’s ability to accurately
locate and identify the species within an image that is refer-
enced by a given textual query. The model must correctly



match the description to the visual region containing the
species and, if applicable, draw bounding boxes or high-
light the relevant area to demonstrate precise localization. A
visual testing sample is illustrated in Figure 35.

Q: Based on the description below,
locate the target object in the image
by providing a bounding box. The
description is as follows:
dermochelys coriacea
GT: BBOX
[DeepSeek VL]: BBOX

Figure 35. Question sample for the Visual Grounding task.

Data collection. The data for this task comes from a pri-
vate image captioning dataset that specifies detailed species
traits and races. Each image is annotated with fine-grained
textual descriptions linked to specific regions, allowing the
evaluation to test whether models can accurately localize the
specified species by matching traits, races, and visual cues
within complex scenes.
Performance. Figure 36 shows the performance of different
models in visual grounding tasks. Most of the closed-source
models struggle to localize objects referred to in text, likely
due to limited grounding-specific training or insufficient
alignment between vision and language components.

The closed-source VLMs also show 0.00% average accu-
racy across the board. This surprising result suggests that
even the strongest proprietary models lack robustness for our
grounding benchmark, possibly because the task requires
fine-grained spatial reasoning beyond their generic multi-
modal pretraining. These results reveal a critical need for
specialized grounding datasets and model enhancements to
improve marine object localization accuracy.

C.6.2. Numerosity Estimation

This dimension assesses the model’s ability to count all rel-
evant entities present in an image, such as fish and vessels.
The model must accurately detect, enumerate, and report the

Figure 36. Model accuracy for the visual grounding task.

Difficulty Description

Simple Question is correct if the error percentage is less than 0.2.

Medium Question is correct if the error percentage is less than 0.1

Hard Question is correct if the error percentage is less than 0.05

Table 6. Definition of each difficulty in Species Identification.

total number of instances, demonstrating robust object detec-
tion and counting capabilities even in complex or cluttered
scenes. A visual testing sample is shown in Figure 37.

Q: How many fish are there
in the image?
A: 22
[Gemini]: 21

Figure 37. Question sample of the Numerosity Estimation task.

To fairly evaluate the performance, all the questions are
split into three different difficulties, where the definitions are
provided in Table 6.
Data collection. This dimension comprises two tasks: fish
counting and ship counting. For the fish counting task, we de-
rive our question-answer pairs directly from the IOCFish5k
dataset [29], which provides precise annotations for fish



counting. For the ship counting task, we generate question-
answer pairs using the ShipRSImageNet dataset [38], which
includes bounding box annotations for ships in satellite im-
ages. These annotations are transformed by counting the
number of bounding boxes.

Figure 38. Model performance for the Numerosity Estimation task.

Performance. As depicted in Figure 38, the model’s accu-
racy declines significantly as the difficulty level increases.
This trend highlights that existing models struggle to deliver
precise counting outputs, particularly in complex scenes or
when objects are densely packed. Even open-source mod-
els trained on extensive datasets exhibit limited improve-
ment, suggesting that current data-driven approaches alone
are insufficient to address the challenges of accurate object
counting.

C.6.3. Depth Ordering
This dimension evaluates the model’s ability to infer spa-
tial relationships by determining the relative depth of ob-
jects within an image. Specifically, the model must identify
which of the four designated points is closest to the camera,
demonstrating an understanding of perspective, occlusion,
and spatial cues. A visual sample is shown in Figure 39.
Data collection. Data for this task is collected from a private
underwater dataset focusing on depth ordering. For each im-
age, four points are manually labeled to represent different
objects or reference spots. The VLMs are then challenged to
determine which of these points is closest to the camera, test-
ing their ability to reason about spatial depth and perspective
in complex marine environments.
Performance. All models, illustrated in Figure 40, fail at
this depth ordering task, and no model achieves over 20%
of accuracy. This poor performance is likely due to the
fact that models lack explicit training on fine-grained spatial
reasoning and depth cues, especially when only 2D visual
inputs are available without the dedicated 3D context or
depth supervision.

C.6.4. Spatial Relation Assessment
This dimension tests the model’s ability to infer and describe
the relative spatial positions of two organisms or objects
within an image. For example, the model must determine

Q: Which of the following points in
(row, col) format is the closest to
the camera?
A) [80, 286]           B) [167, 286]
C) [316, 297]         D) [66, 213]
[DeepSeek VL]: C

Figure 39. Question sample of the Depth Ordering task.

Figure 40. Model accuracy for the Depth Ordering task.

whether one organism is to the left/right of, above/below, or
in front/back of another, demonstrating an understanding of
spatial layout and positional relationships. The model is are
to tell the spatial relationship of one species with respect to
another. A visual sample is shown in Figure 41.
Data collection. The images are self-collected by the human
annotators, who meticulously construct annotations for 100
question-answer pairs.
Performance. As illustrated in Figure 42, it is challenging
for all models to perform accurately in tasks involving rea-
soning about relative positions. This observation highlights
a significant gap in the spatial understanding capabilities of
current VLMs. It suggests that the existing training strategies
and datasets commonly used for mainstream architectures



Q: Please select the relative position of
the blue tang sureonfish with respect
to the clownfish in the image.
A) Top                 B) Bottom  
C) Right              D) Left  
E) Front              F) Back
[Gemini]: B,D

Figure 41. Question sample of the Spatial Relation Assessment
task.

Figure 42. Model accuracy for the Spatial Relation Assessment
task.

are insufficient for equipping models with robust spatial rea-
soning abilities. Addressing this limitation may require the
development of specialized training frameworks, enhanced
datasets that emphasize spatial relationships, or architec-
tural modifications that prioritize spatial reasoning as a core
capability.

C.7. Hallucination Resistance

This capability ensures that the model consistently refrains
from generating unsupported, factually inaccurate, or hal-
lucinatory content when responding to controlled and well-
defined prompts, thereby upholding the reliability, factual
integrity, and trustworthiness of its outputs in structured
evaluation settings.

Q: Are sea anemones living on
the crab's back?
GT: No
[Claude]: No

Figure 43. Question sample of the Hallucination Resistance task.

Figure 44. Model accuracy for the Hallucination Resistance task.

C.7.1. Hallucination Resistance

This dimension evaluates the VLMs’ tendency to generate
inaccurate or fabricated information when responding to
questions about images or scientific content. For example,
models are tested by deliberately posing misleading or trick
questions, such as asking whether certain sea creatures are
positioned next to each other due to mutualism or other eco-
logical relationships, even when this is not visually evident.
It evaluates whether the model generates unsupported or
hallucinatory content under controlled prompts. A visual
sample is shown in Figure 43.
Data collection. To build the hallucination test set, a list of
ecological relationships among sea creatures is first collected,
covering mutualism, parasitism, commensalism, predation,
and competition. For each ecological relationship category,
we selected ten distinct marine organism pairs, demonstrat-
ing that specific interaction. Images are gathered that contain
only one species from each pair, and questions are generated
to ask whether both species are present in the image. This



experimental setup evaluates the model’s tendency to hallu-
cinate by testing whether it falsely claims the presence of
the absent species based on the ecological pairing.
Performance. Figure 44 reports the accuracy of various
VLMs. All closed-source models achieve approximately the
same score of 70%, indicating that hallucination remains
a common failure case for these well-known models. In
addition, this demonstrates that the constructed dataset and
benchmark effectively challenge these models and highlight
this overlooked but important research area for further im-
provement.

D. Copyright And Dataset Usage

Copyright and Data Usage. MarineEval is compiled from a
combination of openly available resources, including public
datasets [12, 17, 23, 25, 30, 32, 35, 38], open-access journal
articles [2, 4–7, 9, 10, 16, 18, 20, 27, 28, 31, 34, 36], search
engine results, and self-collected samples. All third-party
materials are limited to content that is publicly accessible
and legally distributable under their respective licenses, and
each source is explicitly cited or linked to its origin. To
ensure reproducibility and maintain strict licensing com-
pliance, the released dataset will include source information
for all collected materials, along with evaluation prompts
and scripts to facilitate transparent benchmarking and re-
sponsible community adoption. We release our dataset on
the HuggingFace website.

References
[1] Gerald R. Allen. Reef Fish identification: Tropical pacific.

New World Publications, 2015. 9
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