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Figure 1. We present MarineEval, the first large-scale dataset and benchmark to comprehensively assess the ability of existing vision

language models (VLMs) on marine intelligence.
Abstract

We have witnessed promising progress led by large language
models (LLMs) and further vision language models (VLMs)
in handling various queries as a general-purpose assistant.
VLMSs, as a bridge to connect the visual world and language
corpus, receive both visual content and various text-only user
instructions to generate corresponding responses. Though
great success has been achieved by VLMs in various fields,
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in this work, we ask whether the existing VLMs can act as do-
main experts, accurately answering marine questions, which
require significant domain expertise and address special
domain challenges/requirements. To comprehensively eval-
uate the effectiveness and explore the boundary of existing
VLMs, we construct the first large-scale marine VLM dataset
and benchmark called MarineEval, with 2,000 image-based
question-answering pairs. During our dataset construction,
we ensure the diversity and coverage of the constructed data:
7 task dimensions and 20 capacity dimensions. The domain
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requirements are specially integrated into the data construc-
tion and further verified by the corresponding marine do-
main experts. We comprehensively benchmark 17 existing
VLMs on our MarineEval and also investigate the limitations
of existing models in answering marine research questions.
The experimental results reveal that existing VLMs cannot
effectively answer the domain-specific questions, and there
is still a large room for further performance improvements.
We hope our new benchmark and observations will facilitate
future research.

1. Introduction

Vision-Language Models (VLMs) [38, 39, 55, 60, 67, 72,
73, 78] have achieved state-of-the-art results in a wide range
of visual understanding tasks, including open-vocabulary
object recognition [55], image captioning [38, 39], phrase
grounding [53, 56] and interactive visual understanding [51],
because of their strong comprehension ability to align vi-
sual contents and natural-language description. The growing
ability has motivated not only the general public but also
domain research from a broad spectrum of scientific and in-
dustrial fields to adopt VLMs for domain applications, such
as medical analysis [37], mathematical computation [20],
and scientific research [44].

In this work, we focus on the potential ability of pow-
erful VLMs for marine understanding [31, 73], which is
overlooked by existing research, but shares invaluable im-
portance for protecting our ecosystem. The oceans, covering
around 71% of the area of our blue planet, play vital roles
in different fields, making marine research non-negligible.
Regarding the importance of marine research, they remain
logistically difficult and expensive to observe. Though quali-
tative results of VLMs in general scenarios so far are encour-
aging [34-36], quantitative evaluation is of great necessity to
systematically evaluate and compare the abilities of various
VLMs to conduct marine visual understanding.

Directly applying the existing VLMs for detailed marine
visual understanding is non-trivial, and there are still some
significant challenges. First of all, the underwater condi-
tions [2, 73] contain the non-trimmed background, lacking
prior knowledge for obtaining a reliable and comprehensive
marine understanding. Furthermore, strong performance on
generic datasets does not guarantee decent accuracy in spe-
cialised settings, where data distribution shift, domain gaps,
and the lack of domain-specific knowledge can severely
degrade model reliability, leading to significant hallucina-
tion [74]. We argue that the general-purpose evaluation
dataset does not faithfully reveal the VLMs’ capability in
addressing domain-specific requirements (e.g., biologists fa-
vor the population/density estimation [64, 75, 76], object
counting [61], and relationship summarization [25]), as it
rarely provides tailored tasks or authoritative ground truth

for domain research. Consequently, existing research cannot

effectively and reliably evaluate the performance of VLMs

in handling marine understanding.

To satisfy the need for marine evaluation, a representative
and rigorous benchmark tailored to a domain application is
indispensable for tracking methodological progress and se-
lecting reliable models. Besides, evaluating the performance
of VLMs in marine research will provide valuable insights
into the flexibility of existing VLMS as a domain-specific
Al assistant. However, there are a few attempts [52, 72] to
comprehensively evaluate VLM for more advanced analysis,
which requires domain-specific knowledge and expertise.
The foregoing analysis implies that a domain-aware evalua-
tion dataset should satisfy two criteria: 1) questions should
demand specialised marine knowledge rather than common
sense; 2) capability dimensions should be defined at a granu-
larity that reflects specific domain requirements.

In this paper, we take all the above-discussed chal-
lenges into consideration, presenting the first large-scale
marine VLM dataset and benchmark called MarineEval. Our
MarineEval is a multi-task dataset (including diverse ques-
tion/task formats) with 2,000 manually constructed high-
quality image-based question-answering pairs from 7 task
dimensions and 20 domain-specific capability dimensions as
illustrated in Figure 1. To retain the quality of the constructed
benchmark, we have formulated a rigorous pipeline shown
in Figure 2 to construct our dataset, which involves visual ne-
cessity testing and domain expert verification. Furthermore,
to alleviate subjective grading and promote evaluation effi-
ciency/reliability, we introduce detailed, scalable evaluation
procedures to comprehensively assess VLM performance
across multiple question formats. We have benchmarked
17 existing SOTA VLMs on our MarineEval on the right of
Figure 1, where the best model could only achieve 49.58%
accuracy. Substantial progress is still needed to enhance
VLMs’ performance on marine visual understanding. Our
contribution can be summarized:
¢ We curate the first marine VLM benchmark with 2,000

high-quality image-based question-answering pairs, dedi-
cated to marine analysis, enabling rigorous assessment of
models on marine vision language tasks.

* We have included the domain requirements/challenges
into our benchmark construction, where 20 manually con-
structed capacity dimensions could comprehensively mea-
sure VLMs’ ability for marine understanding.

* Our experimental results and observations reveal limita-
tions of existing VLMs, demonstrating persistent chal-
lenges in spatial reasoning, precise localization, species
identification, and ecological knowledge integration.

2. Related Work

VLMs. The impressive performance of ChatGPT [49] and
GPT-4 [50] has led to increasing attention to produce more



powerful LLMs as an Al assistant. VLMs equip LLMs
with the ability to receive visual content, and they have
unveiled remarkable zero-shot image-text capabilities in a
conversational format. Flamingo [4] pioneered web-scale
vision-language pretraining by bridging image and text mod-
els. BLIP [38, 39] bootstraps vision-language pre-training
from frozen pre-trained image encoders and frozen language
decoders. Based on BLIP-2 [39], MiniGPT-4 [78] proposed
a projection layer to align pre-trained vision encoders to
frozen LLMs (e.g. Vicuna [12]), and exhibited respectable
zero-shot image comprehension in dialogues. GPT-4V [51]
showcased impressive general-purpose visual understanding
and reasoning abilities. However, these VLMs may still
make mistakes, especially for the domain-specific knowl-
edge, since it is not specifically optimized on the reliable
domain-specific corpus/knowledge.

Marine datasets. Several datasets have recently been in-
troduced for the marine domain. They provide insight into
VLMs’ capacity for marine understanding. Marinelnst [73]
emphasizes fine-grained perception by generating captions
for individual object instances, while SeaFloorAl [47] con-
centrates on geological and spatial knowledge through ques-
tion answering. MarineEval aims to evaluate broader model
capabilities across the marine domain.

Benchmarking VLMs. Evaluating VLMs remains chal-
lenging due to the difficulty of assessing both their visual
perception capabilities and their alignment with the inher-
ently subjective and associative nature of human percep-
tion [18, 59]. To support systematic evaluation, multiple
benchmarks have been introduced. For example, the SEED-
Bench series [34-36] assesses VLMs through hierarchical
tasks spanning a wide range of capabilities, while MM-
Star [10] and related work [24] expose risks of knowledge
leakage, whereby models infer answers from contextual cues
rather than visual input. Evaluation efforts have also been ex-
tended to specialized domains such as recommendation [77],
medicine [37, 57], multilingual understanding [29], and
mathematics [20, 70], highlighting their potential but also
their limitations. Addressing the lack of resources for ma-
rine applications, we introduce MarineEval, the first dataset
tailored to evaluate VLMs in marine-centric tasks, explicitly
incorporating domain-specific requirements.

3. MarineEval

In this section, we detail how we construct our MarineEval,
which adheres rigorously to the evaluation criteria, while
placing a strong emphasis on addressing specific marine chal-
lenges. It provides a tailored framework and well-defined
capability dimensions to assess the effectiveness of VLMs
in solving marine questions as illustrated in Figure 2.

3.1. General Criteria

MarineEval emphasizes 3 criteria for VLM evaluation.

Visual necessity: VLMs should derive the answers based on
visual content, rather than relying solely on the textual inputs.
As highlighted in [9, 24], there is a risk of knowledge leak-
age, where the question itself contains sufficient contextual
cues for a well-trained LLM to get the correct answer. Such
scenarios compromise the validity of the evaluation, as they
fail to faithfully reflect the models’ visual comprehension.
Objectivity: The evaluation rubrics should be clearly de-
fined to avoid any subjective judgment. Existing works [29]
adopt Likert-scale scoring, where the response is rated on
arange (e.g., 1 to 5). Even though such scoring allows for
more precise performance analysis, it may result in fluctu-
ation across adjacent scores if the criteria are not clearly
defined or the evaluators do not reach a common sense. This
lack of clarity results in subjective and inconsistent evalua-
tions, reducing the reliability of the results.
Stability: Evaluation results should demonstrate stability
and consistency across repeated trials. However, existing
approaches frequently depend on human annotators, whose
judgments are inherently subjective and susceptible to cog-
nitive bias. This reliance introduces variability in outcomes
when different groups of evaluators conduct the same exper-
iments, thereby undermining the reproducibility and compa-
rability of the results.

With the consideration of the above criteria, we formulate
our dataset construction (Section 3.2) and evaluation process
(Section 4.1) accordingly.

3.2. Dataset Construction

MarineEval employs a systematic multi-step process for
dataset construction, as shown in Figure 2:

Data collection: We first harvest a large range of diverse
public datasets by aggregating and post-processing the cor-
responding visual annotations from these candidate sources,
including public classification datasets [26, 46, 63, 67, 71],
object detection datasets [33, 48], counting dataset [61],
marine-related books [5, 23, 28], scientific papers [8, 13—
16, 19, 21, 32, 40, 45, 54, 58, 62, 66, 68], authoritative web-
pages [1, 17, 30], search engine, and private data. Detailed
data source distribution is included in the Appendix.
Visual necessity testing: To eliminate questions that can
be answered without visual content, a visual necessity test
was conducted. Specifically, each question-answer pair in
the candidate dataset was tested by removing the associ-
ated image and inputting it into five VLMs (Claude-3.7-
Sonnet-Vision [6], Gemini-2.0-Flash-Vision [22], Grok-2-
Vision [65], GPT-40-Vision [51], and Qwen-VL-Plus [7]). If
any one of the models can infer the answer without relying
on the visual content, the corresponding question will be
deemed to exhibit data leakage and will be excluded from
further consideration. We emphasize that such visual neces-
sity testing could better fairly evaluate the ability of existing
VLMs to truly understand the given visual contents.
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Figure 2. Workflow of MarineEval construction. 1) We first harvest diverse sources of candidate question-answer pairs, where the ground
truth answer is post-processed by automatic programs or GPTs. 2) We adopt a visual necessity test to filter out pairs that are answerable
without visual inputs. 3) Finally, domain experts construct and verify 2,000 high-quality pairs to constitute the final dataset.

Final filtering. Besides the automatic and program-based
construction, we also design a human-in-the-loop procedure
to manually formulate the final dataset, where the ground
truth answers are verified by domain experts.

3.3. Evaluation Dimentions

Our MarineEval could be systematically categorized into 7

overarching task dimensions and 20 capacity dimensions.

The 7 tasks are summarized below, and some concrete ex-

amples are shown in Figure 3. Details of 20 subfields are

provided in the Appendix.

1. Species Comprehension examines the capability of
VLMs to identify and interpret species-level visual infor-
mation, thereby contributing to biodiversity monitoring
and ecological research.

2. Behavior & Trait Extraction focuses on the ability to
derive meaningful insights into the behavior and physical
traits of marine organisms, facilitating advancements in
automated observational and documentary records.

3. Document Interpretation evaluates the capacity of
VLMs to analyze and derive insights from scientific lit-
erature and documentary sources. This functionality is
especially critical for enhancing scientific understanding
and generating insightful ecological reports.

4. Conservation & Threat Analysis emphasizes the ability
of VLM s to accurately interpret domain-specific content,
particularly in the context of endangered species and
disaster classification.

5. Spatial Reasoning measures spatial comprehension abil-
ity. While it is commonly evaluated in general scenarios,
MarineEval specifically investigates whether VLMs sus-
tain high performance in marine environments.

6. Marine Technology Understanding evaluates under-
standing of marine technologies, which constitute a criti-
cal component of marine research.

7. Hallucination Resistance tests the robustness of VLMs
in avoiding erroneous or hallucinatory outputs. Specifi-
cally, it involves pairing generally true statements with
images that depict corner cases or counterexamples to
assess whether the VLM is susceptible to being misled
by the accompanying statements.

3.4. Dataset Statistics and Specific Features

MarineEval consists of 2,000 image-based question-answer
pairs that span across 7 tasks and 20 capacity dimensions.
To comprehensively evaluate the abilities of VLMs, we
designed five distinct question formats: ‘“Yes-No ques-
tions”, “multiple-choice questions”, “localization questions”,
“closed-form questions”, and “summarization questions”, as
illustrated in Table 1. This diversity in question types enables
MarineEval to assess a wide spectrum of capabilities for ma-
rine visual understanding, from basic factual judgement to

complex reasoning and summarization tasks.

Our dataset contains three key features compared with
existing general-purpose benchmarks:



Question Format Description

Yes-No Question Models make binary classification to deter-

mine whether a statement is true or false.

Multiple-Choice Models select one or more than one correct

Question option from at least four choices.
Localization Models are asked to provide bounding box
Question of target objects in COCO format.

Closed-Form
Question

Models respond in a restricted format (e.g.,
give a number or short phrases).

Models are asked to summarize the insight
of the given image in free format.

Summarization
(Open-ended)

Table 1. Explanations of different question formats in MarineEval.

1. Domain-specific marine knowledge requirements. The
majority of questions in MarineEval demand specialised
expertise in marine science, such as taxonomic classification,
IUCN conservation status, and biogeographic distribution
of specific organisms. This emphasis probes a knowledge
space largely absent from mainstream training corpus, and
thereby challenges the existing VLMs not only to retrieve
and synthesize information but also to operate effectively
within specialized knowledge domains.

2. Pronounced visual domain shift. The collected images
in MarineEval diverge markedly from the general-purpose
dataset that focuses on common scenarios or human-centered
events. Differently, MarineEval features a large proportion
of underwater photographs, exhibiting low contrast, motion
blur, colour attenuation, and a large range of perspectives.
The images often capture complex habitats such as reef
communities and pelagic schools, while some of the images
are satellite imagery. These modalities create a substantial
distribution shift and introduce visual complexities, thereby
providing a robust test bed to stress the zero-shot visual
generalisation of VLMs.

3. Practical evaluation setting with specific domain re-
quirements. MarineEval intentionally upheld both closed-
form questions and open-ended questions to better represent
real-world scenarios. While existing VLM datasets prioritize
ease of evaluation by only providing “Yes-No” or “multiple-
choice questions”, MarineEval comprises 420 closed-form
and open-ended questions (nearly one-fourth of the datasets)
to measure models’ ability to perform nuanced interpretation
and free-form reasoning. Our design enables a more faithful
measure of practical utility, where a fixed answer set is not
available for a question.

4. Experiments

We first detail our experimental setting and then evaluate 17
SOTA VLMs on MarineEval by conducting a quantitative

analysis and summarizing key findings regarding limitations
of VLMs in marine visual understanding.

4.1. Experiment Settings

We start by explaining how we evaluate the existing VLM:s.
To ensure objectivity, stability, and scalability, as outlined
in Section 3.1, we adopt a binary judgement evaluation
strategy and report the final accuracy. To clearly verify
the model responses, MarineEval classifies model outputs
to either correct or wrong, regardless of their format or
associated capability dimensions. Such an evaluation design
introduces two benefits:

1. Clear marking rubrics. Unlike Likert-scale scoring,
where marking criteria can often be ambiguous, binary
judgment lowers the evaluation difficulty by reducing
the scoring task to a binary classification. It minimizes
subjective interpretations and thus promotes greater ob-
jectivity and reproducibility in evaluation.

2. Easy comparison. Binary judgement standardizes com-
parison by using accuracy as a universal metric across
different models and dimensions. By maintaining a con-
sistent evaluation standard, comparisons across models
and dimensions become more straightforward.

We then provide the detailed evaluation metrics for com-
puting the final accuracy regarding different question for-
mats. For the “Yes-No” and “Multiple-Choice” questions,
we first utilize the template matching to compute the accu-
racy of generated responses of various VLMs. During the
evaluation procedure, we found some VLMs frequently vi-
olated the required response format, as these VLMs cannot
strictly follow the user instructions to generate the required
responses. To address this issue, we evaluate the models by
appending each option to the question and computing the
log-probability of the entire answer sequence. Instead of
using raw logits, we compare the summed log p values over
all tokens in the option. This avoids numerical issues and
allows for fair comparison across options of varying lengths.
The option with the highest total (or average) log-probability
is selected as the final answer, and then we can eliminate
the format issues for both “Yes-No” and “Multiple-Choice”
questions. We adopt models’ native decoding strategies for
computing the probabilities.

Localization Questions. We evaluate the ability of VLMs
to localize the specified object by the user instructions in the
given image. We ask VLMs to follow the COCO format:
(z,y,w, h) to yield the bounding box prediction. Then we
compute the Intersection-of-Union (IoU) between the pre-
diction and ground truth. We regard the output with an IoU
score over (.3 as an accurate prediction.

LLM for Judgement. While existing datasets often use
multiple-choice questions to reduce ambiguity, MarineEval
includes complex closed-form and open-ended questions to
better reflect real-world marine scenarios and enable more



Species Identification

% Q:What s the taxonomic
species name of the
organism in the image?

A) Indian Ocean

A: magalhaensis C) Malalag Bay

Camouflage Locall

Q: What s the ecological relationship demonstrated in the images?

Species Comprehension

Q: Can you locate the camouflaged
marine species in the image?

A) parasitism B) predation ) competition
A:[501, 331, 332, 166]

D) commensalism E) mutualism

Behaviour & Trait Extraction

Traits Extraction

Ecological Attribute Inference

Q: Which of the following is the geological
distribution of the species in the image?

B) North Australian Shelf

D) Sulu-Celebues Sea

Cross-Image Matching

Q: Are these two images of the same species
A: Yes

Biodiversity Recognition

Q: Which of the following species
are presented in the images?

A)fish
B) nurse shark

©) carcharodon carcharias
D) megadptes antipodes

Hallucination Resistance

[General Cases]  [Counter Example] |

Q: What is the distinctive feature of
the fish's pelvic fins in the images?
A) short and rounded

B) absent

C) transparent and delicate

D) long and trailing, almost the
length of its body

Q: What is the fiddler crab doing in

these images?

A) Building a burrow

€) Searching for food

D) Mating display defends the anemone from predators and cleans .

[General Knowledge] Clownfish and sea anemones share a
B) Fighting mutualistic relationship where the anemone provides the
clownfish protection with its stinging tentacles, while the clownfish

@] [Misleading Question]

[o}e) Q: Is the clownfish swimming among the
(QO] seammemares
1
A:No

Document Interpretation

Book Understanding Paper Understanding

Q: Are the highest surface current
speeds observed in the narrow
channels and inlets?

A:Yes

Q: Which area in the Archipelago Sea
shows the highest surface current
speed?

A) Northern channels
B) Southern channels
©) Central channels
D) Eastern channels

Q: The species shown in the third
row, first column has the size of

Conservation & Threat Analysis

Pollutant Localization
Q: Can you detect all the
debris in the image?
A:[333,369,161,277]

Disaster Diagnosis
] Q: What is happening in the image?
A) Algal bloom disaster

B) Lost cargo containers at sea

C) Capsized ferry

D) Underwater volcanic eruption

Threat-Status Determination

Q: What s the conservation status of

Spatial Reasoning

Visual Grounding

Q: Based on the description below,
locate the target object in the
image.

The imoge is of a crob. It has a light-bive body
with red clows. One clow is much larger. It is
crawling across mud. I s focated on the right.

A: [384,223,176,208]

Numerosity Estimation

R ek
Q: How many fish are there in the
image?

A:22

Depth Ordering

Q: Which of the following points in
(row, col) format is the closest to the
camera?

A) [80, 286]

B) [167, 286]

) [316, 297]

D) [66, 213]

Spatial Relation Assessment

Q: Please select the relative position
of the with
respect to the in the image
A)Top B) Bottom C) Right

D) Left E) Front F) Back

Marine Tech.

Q: What is the
primary purpose
of the marine

Moorngs

cm.

Eigure Understanding

Al

Q: Summarize the information of
the species shown in the first row,
first column?

Q: The graph shows the relationship
between bed load transport rates and
___under ISWs.
A: water depth

A: Translucent white with a
network of opaque white frosting
over much of the notum. ...

technology shown
the species shown in the image, &

according to the IUCN Red List in in the image?
8| 202

A)Critically Endangered

8) Vulnerable

Loy
M dependent A) Underwater navigation

=9 D) Data Deficient

B) Ocecanographic data collection
) Marine wildlife observation
D) Submarine communication

Figure 3. Overview of 7 task dimensions and 20 capacity dimensions of MarineEval. Best viewed in color.

comprehensive VLM evaluation. Evaluating open-ended
responses is challenging due to nuanced interpretation, as
generated answers may differ syntactically yet match seman-
tically with ground truth. We employ LLMs for automated
accuracy assessment, enabling scalable semantic comparison
between ground truth and candidate responses. In detail, for
both closed-form and open-ended questions, we first con-
struct ground truth answers by domain experts as illustrated
in Figure 4, where keypoints are summarized. Then we feed
both the generated responses from the VLMs and the sum-
marized keypoints by the humans to the LLMs to perform
the matching from two aspects: whether there are 1) missing
contents or 2) extraneous contents in the generated responses
compared with the ground truth answers. In our experiments,

considering there are some potential biases within the LLMs,
we have chosen 3 powerful LLMs: GPT-40-mini, Grok-3-
mini, and DeepDeek-chat in our experiments.

4.2. Baselines

In our experiments, we have included 12 open-source
VLMs: DeepSeek-VL-chat [43], OpenFlamingo [3], Mini-
Monkey [27], InternVL-2.5 [11], LLaVA-1.6 Vicuna [41],
InternLM-XComposer2.5 [69], LLaVA-Next [42] and
InternVL-2 [11]; and 5 close-source VLMs: Claude-3.7-
Sonnet-Vision [6], Gemini-2.0-Flash-Vision [22], Grok-2-
Vision [65], GPT-40-Vision [51], and Qwen-VL-Plus [7] for
evaluation. In detail, we adopt the official models released
on Huggingface for the open-source model, where the model



Q: Summarize the traits.
[Ground Truth]:
« Black and white banded eyestalks
« Bluish gray eyes
« Black claws

[Missing Content]: ; i

This creature has eyestalks with a black and white striped pattern and bluish-
gray eyes that stand out.

[Semantically Equivalent]: V

The species is recognized by its banded eyestalks in black and white,
grayish-blue eyes, and distinctively dark claws.

[Extraneous Content]: ; :

Known for its black and white banded eyestalks, bluish-gray eyes, and black

claws, this species is commonly found in coastal areas, often inhabiting

discarded shells for protection.

Figure 4. Open-ended responses frequently include omissions or
irrelevant content, which hinders reliable evaluation. We employ
the LLM for judgments to compare the ground truth answers and
generated responses.

size ranges from 1.8B to 38B. All experiments for the open-
source model are conducted using 6 NVIDIA GeForce RTX
4090 D. All the used prompts and hyperparameter configu-
rations will also be released. For the closed-source models,
we conduct evaluations by calling their official APIs, with a
total of 10,000 inference calls (5 closed-source models for
2,000 questions) made to ensure robust and fair comparison.

4.3. Results and Observations

The quantitative result comparisons between all the bench-
marked VLMs are reported in Table 2. We report the de-
tailed accuracy of 7 task dimensions in our MarineEval, the
average accuracy across these 7 tasks, and the total accu-
racy (the primary performance metric) on the total dataset.
We also recruited participants from both general and ma-
rine backgrounds to answer the questions as a reference to
upper-bound human performance. We have the following
observations regarding the results:

Inefficacious spatial and species understanding. Spatial
Reasoning (SR) and Species Comprehension (SC) remain
among the most challenging capabilities for all evaluated
models. Spatial reasoning tasks, such as image grounding
and depth ordering, require fine-grained geometric repre-
sentations that are insufficiently captured by current VLM:s.
Species comprehension, on the other hand, involves tax-
onomic identification and the inference of ecological at-
tributes, which are beyond the scope of general-purpose
VLMs. Further analysis on the impact of the domain gap
(please refer to supplmentary) indicates that the limited per-
formance in species comprehension is largely attributed to

the models’ lack of domain-specific knowledge. In contrast,
the poor performance in spatial reasoning primarily stems
from an inherent deficiency in spatial understanding in the
general setting.

Ecological insight scarcity. The performance of Conserva-
tion & Threat Analysis (C&TA) is still low for all models,
C&TA questions involve disaster diagnostics and [IUCN con-
servation status prediction, which represent corner cases and
rare knowledge that is sparsely represented on the open web.
Our results suggest that simply enlarging general-purpose
corpora fails to cover long-tail ecological phenomena and
the specialised reasoning they require.

Model choice. Model scale is not a reliable performance pre-
dictor of performing marine visual understanding. InternVL-
2.5 (4B size) outperforms several larger models (even double-
sized) and surpasses the closed-source models on multiple
axes. This outcome underscores that architectural choices,
vision encoders, and training strategy can outweigh parame-
ter count. It also suggests diminishing returns for brute-force
scaling when domain-specific supervision is scarce.

4.4. Further Analysis

In this section, we provide more experimental analysis.
Visual Necessity. We investigate the necessity of visual
input in answering the questions, ensuring that the model
cannot infer correct answers solely from the textual content.
To this end, we conduct experiments under two settings: 1)
with visuals, where the actual visual input is provided, and
2) without visuals, where a meaningless blank image is used
as input. We evaluate all five closed-source VLMs and re-
port their average accuracy across these settings. As shown
in Table 3, model performance declines substantially when
visual information is removed. We also include the accuracy
of random guessing as reference. Notably, a small subset of
closed-form questions are answered correctly even without
visual input, primarily in counting tasks where models’ ran-
dom guesses coincide with the ground truth. Overall, these
results confirm that the construction process of MarineE-
val does not unintentionally leak information to the VLMs,
thereby ensuring the validity and integrity of the evaluation.
LLM reliability. We then investigate the reliability of us-
ing LLMs as judges, focusing on two key aspects: stability
and human alignment. To assess stability, we repeat the
evaluation procedure three times and report the mean and
standard deviation in Table 4. The experimental results
show that incorporating LLMs does not introduce instability
when evaluating the responses generated by VLMs under
our experimental setup. For human alignment, we randomly
sample 500 question-response pairs, which are indepen-
dently evaluated by both human annotators and LLM judges.
The results indicate that the final judgments produced by
the LLMs achieve a 95.40% agreement rate with human
evaluators, demonstrating the reliability of using LLM:s.



Open-source VLMs

Model #. Params. | B&TE C&TA DI HR  MTU SR SC Avg.  Total
DeepSeek-VL-chat [43] 1.3B 27.86 3933 11.00 59.00 3431 2225 18.33 30.30 24.96
OpenFlamingo [3] 2B 2090  40.33 533  60.00 21.57 8.25 9.83 2374 17.62
Mini-Monkey [27] 2B 4428 5033 33.00 58.00 7451 1275 27.67 4293 3445
InternVL-2.5 [11] 4B 65.17  56.67 5400 64.00 80.39 16.75 29.33 5233 4254
LLaVA-1.6 Vicuna [41] 7B 68.66  52.00 38.67 53.00 71.57 34.00 37.33 50.75 44.73
InternLM-XComposer2.5 [69] 7B 64.18 6033 4933 5200 7549 14.00 30.17 4936 41.14
LLaVA-Next [42] 8B 4478  69.67 25.67 32.00 5490 32.00 26.67 4081 3754
InternVL-2 [11] 8B 5522 55.00 46.00 65.00 7843 16.50 34.17 50.05 41.44
InternVL-2.5 (26B) [11] 26B 3532 41.67 47.00 66.00 7451 25.00 3233 4598 38.59
LLaVA-Next-Qwen [42] 32B 67.16  60.00 3833 65.00 7255 16.50 43.67 51.89 44.78
LLaVA-1.6 Hermes-Yi [41] 34B 68.66  52.00 38.67 53.00 71.57 34.00 37.33 50.75 44.73
InternVL-3 [79] 38B 7413 4833 60.33 68.00 7843 2250 39.83 5594 47.53
Avg. across models - 53.81 5277  37.19 5942 7119 21.23 3027 46.14 39.17
Close-source VLMs
Model #. Params. | B&TE C&TA DI HR  MTU SR SC Avg.  Total
Claude-3.7-Sonnet-Vision [0] - 68.16  53.67 5233 71.00 8333 2450 45.17 56.88 48.93
Gemini-2.0-Flash-Vision [22] - 65.17  60.67 59.67 74.00 87.25 29.00 55.33 61.59 55.07
Grok-2-Vision [65] - 77.61 54.67 2733 74.00 70.59 34,50 54.00 56.10 50.42
GPT-40-Vision [51] — 69.15  44.67 51.67 7200 62.75 26.50 40.50 5246 45.58
Qwen-VL-Plus [7] - 5224  41.00 42.00 71.00 8529 25.00 39.50 50.86 42.39
Avg. across models - 66.07 5034 4620 7240 77.64 2790 46.10 55.18 48.08
Human Performance
General Background - 68.65 5433  60.17 82.00 7696 5150 31.42 60.72 5175
Marine Background - 75.00 7033 69.67 83.00 72.00 64.00 57.50 70.31 66.35

Table 2. The average accuracy across 7 task dimensions. Abbreviation: Behavior & Trait Extraction (B&TE), Conservation & Threat
Analysis (C&TA), Document Interpretation (DI), Hallucination Resistance (HR), Marine Technology Understanding (MTU), Spatial
Reasoning (SR), Species Comprehension (SC). We calculate the average accuracy across 7 tasks and the total accuracy of 2,000 questions.

— indicates the number cannot be computed.

Question Format Acc. (w/ visuals) Acc. (w/o visuals) Random guessing

Yes-No 62.24 42.66 50.00
MCQ 43.28 19.00 23.77
Localization 01.27 00.00 -
Closed-form 20.85 04.34 -
Summarization 12.67 00.00 -
Total 35.84 13.83 -

Table 3. Effectiveness of visual inputs on MarineEval, where aver-
age accuracy of all 5 closed-source VLMs in each question format
is reported. “w/o visuals” indicates the VLMs are not given with
any visual input or given with a meaningless blank image. We also
report the accuracy of random guessing if available.

Potential data contamination. We acknowledge the po-
tential data contamination issue in MarineEval, where some
evaluation data might overlap with the training data of exist-
ing VLM s since this overlap could result in a biased or unfair
comparison. Considering that all the benchmarked VLMs
were optimized on diverse and extensive training corpora, it
is inherently challenging to guarantee that all the testing data
in MarineEval is entirely unseen by these models, as part
of the data sources of MarineEval also come from publicly
available datasets or public websites. Finally, it is important
to emphasize that the primary objective of MarineEval is

Question Format Acc. (meangyq)

Closed-form 20.8300.04

Summarization 12.6700.00

Table 4. Mean and standard deviation of accuracy among 3 trials
of using LLMs for measuring the generated responses from VLMs.

to explore the strengths and limitations of current VLMs in
addressing marine challenges, not to fully address the data
contamination issue.

5. Conclusion and Discussion

In this work, we investigated whether existing VLMs can
serve as domain experts in marine understanding, a field de-
manding specialized knowledge and nuanced understanding.
Through the construction of MarineEval, the first large-scale
marine VLM benchmark encompassing 2,000 image-based
QA pairs across 7 task dimensions and 20 capacities, we rig-
orously evaluated 12 open- and 5 closed-source VLMs. Our
experiments revealed a critical gap: while general-purpose
VLMs excel in broad tasks, they struggle with marine under-
standing and exhibit notable hallucinations when addressing
spatial localization and species identification tasks.
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